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1 Introduction

This experiment was based on J.J. Thomson’s 1897 experiment.[1] In his experiment,
Thomson shot a beam of particles through a partial vacuum in a glass tube and
between two plates. He noticed that the particles, or electrons as we now know
them, were being deflected at an angle away from the negatively charged plate
allowing him to conclude that the particle had a negative charge. Using magnets,
he was also able to calculate the charge to mass ratio for these particles. The goal
of this experiment was to find a ratio of electron charge to electron mass. The basic
physics principal that was used in this experiment was that charged moving particles
get deflected in magnetic fields and thus when the strength of the magnetic field and
the distance of the deflections is known or measured, then the charge to mass ratio
can be calculated. A uniform magnetic field can be achieved with the Helmholtz
coils.

2 Theory

Starting with Lorentz’s force law[2] given in Equation 1,

~Fm = q~v × ~B (1)

where ~Fm is the magnetic force vector, q is the charge of the particle, ~v is the
velocity vector of the particle, and ~B is the magnetic field vector, the equation can
be simplified to Equation 2, which is scalar, if the assumption is made that the the
electron beam and magnetic field are perpendicular.

Fm = qvB (2)

Assuming that the path of a charged particle, an electron in this experiment, is
perfectly circular in a uniform B-field, the centripetal force must also be considered
and factored in. Centripetal force is given by Equation 3

Fc = mv2

r
(3)

where m is the mass of the particle, v is the velocity of the particle, and r is the
radius of the circular path it travels on.

Since the electron path was constant in this experiment, it is assumed that
Fnet = 0 = Fm − Fc and as a result Fc = Fm. All other forces, like gravity, can
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be assumed to be negligible. Therefore combination of Equation 1 and 2 results in
equation 4.

mv2

r
= qvB (4)

Equation 4 can be solved for the charge to mass ratio producing Equation 5.

v

rB
= q

m
(5)

Equation 5 shows that only 3 variables are needed to calculate e/m ratio. The r
can be measured from visible results of the experiment while the v and B are a
little bit more involved to calculate. Since the electrons are being accelerated by
some electrical potential, V, their kinetic energy is equal to q*V resulting in the
Work-Energy theorem shown in Equation 6 which can then be rearranged to solve
for velocity, v, as shown in Equation 7.

qV = K.E. = 1
2mv

2 (6)

v =

√
2qV
m

(7)

The B-field produced by the Helmholtz coils is given by Equation 8, where I is
the current through the coils, N is the number of turns in each coil equal to 130,
µ0 is the permeability constant equal to 4π ∗ 10−7H/m, and A is the radius of the
Helmholtz coils, which was measured to be 0.154 ± 0.005 m.

B = [Nµ0]I
(5/4)3/2A

(8)

Deriving the B-field in the Helmholtz coils was a much more involved process.[2]
Starting with Biot-Savart law, shown in Equation 9, where r is the distance from
the source to some point, dl is some small length along the loop, we can derive
Equation 10 which is Biot-Savart law for a loop by substituting r2 = x2 +A2, since
the field is going along the x axis and

∫
dl = 2πr, since the path is one loop.

B = µ0I

4π

∫
dl × ~r

r2 (9)

B(x) = µ0I

2
A2

(A2 + x2)3/2 (10)
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Therefor, the magnetic field along the x axis of loops located at -d and +d is Equa-
tion 11, which equals 0 at x=0.

Bx = µ0I

2

(
A2

(A2 + (x+ d)2)3/2 + A2

(A2 + (x− d)2)3/2

)
(11)

Differentiating the expression produces Equation 12:
dBx
dx

= µ0I

2

(
−3

2[A2 + (x+ d)2]−5/22(x+ d) − 3
2[A2 + (x− d)2]−5/22(x− d)

)
(12)

Equation 12 can then be simplified to produce Equation 13:

dBx
dx

= −3µ0IA
2

2

(
x+ d

[A2 + (x+ d)2]5/2 + x− d

[A2 + (x− d)2]5/2

)
(13)

Differentiating dBx
dx again results in d2Bx

dx2 = 0 as demonstrated in Equation 14:

d2Bx
dx2

∣∣∣
x=0

= 0 =
[

(A2 + (x+ d)2)5/2 − 5
2(x+ d)(A2 + (x+ d)2)3/2(x+ d)2

(A2 + (x− d)2)5

]

+
[

(A2 + (x− d)2)5/2 − 5
2(x− d)(A2 + (x− d)2)3/2(x− d)2

(A2 + (x− d)2)5

] (14)

Simplifying Equation 14 yields Equation 15:

0 =
[

(A2 + d2)5/2 − 5d2(A2 + d2)3/2

(A2 + d2)5 + (A2 + d2)5/2 − 5d2(A2 + d2)3/2

(A2 + d2)5

]
(15)

Multiplying Equation 15 by (A2 +d2)5 and dividing by (A2 +d2)3/2 produces Equa-
tion 16 which can then be solved do obtain the value of d, d = A

2 .

0 = A2 + d2 − 5d2 (16)

Plugging in that value of d into Equation 11, produces Equation 17 which is equal to
the magnetic field of a Helmholtz coil with only one wire turn in the coil. Multiplying
Equation 17 by N produces Equation 8, which accounts for N turns in each coil.

Bx
∣∣∣
x=0

= µ0IA
2

2

(
1

(A2 + (A2 )2)3/2 + 1
(A2 + (A2 )2)3/2

)
= µ0I

(5/4)3/2A
(17)

Now since both B and v are known, plugging in Equation 8 and Equation 7 into
Equation 5 yields the final formula for calculating charge to mass ratio as shown in
Equation 18.

q

m
= v

Br
= 2V (5/4)3A2

(Nµ0Ir)2 (18)
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3 Methods / Experimental Setup

Setup and the collection of data was fairly simple in this experiment. Even though
the experiment was conducted in a fairly dim room, the hood was placed over the
apparatus, as shown in Figure 1, to help with visibility. The E/M apparatus was

Figure 1: E/M Apparatus

connected to a power source, shown in Figure 2, and the toggle switch was switched
to the e/m MEASURE option and all meters and connections were connected as
shown while the current adjust knob for the Helmholtz coils was off. The Heater
was set to 6.30 ± 0.005V on the power supply while the Electrodes received varying
voltages from 150 V to 300 V, shown in Table 1 and Table 2, as this was the
independent variable of the experiment. The Helmholtz coils were adjusted to 6.17±
0.005V which produced a current of 1.394 ± 0.0005A according to a digital multi-
meter. Next, power to the power supply was turned on. The apparatus was then
allowed to heat up for 10 minutes. The final step was to adjust the bulb, shown in
Figure 3 so that the green ring inside from the electrons would be parallel to the
coils.

3.1 Data Collection

This experiment was conducted as one set of 11 measurements at different voltages
and the collected data was put into Table 1.
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Figure 2: Power Source and Connections

Current to Heater (A) Voltage to Electrodes (V) Radius of Electron Ring (m)

1.394 ±0.0005 155.3 ±0.05 3.30 ±0.05 × 10−2

1.394 ±0.0005 165.4 ±0.05 4.35 ±0.05 × 10−2

1.394 ±0.0005 180.1 ±0.05 4.40 ±0.05 × 10−2

1.394 ±0.0005 195.4 ±0.05 4.75 ±0.05 × 10−2

1.394 ±0.0005 210.7 ±0.05 4.95 ±0.05 × 10−2

1.394 ±0.0005 225.6 ±0.05 5.20 ±0.05 × 10−2

1.394 ±0.0005 240.4 ±0.05 5.40 ±0.05 × 10−2

1.394 ±0.0005 255.8 ±0.05 5.55 ±0.05 × 10−2

1.394 ±0.0005 270.4 ±0.05 5.75 ±0.05 × 10−2

1.394 ±0.0005 285.2 ±0.05 5.80 ±0.05 × 10−2

1.394 ±0.0005 300.0 ±0.05 5.90 ±0.05 × 10−2

Table 1: Measured radius based on constant current and changing
voltage
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Figure 3: E/M Tube

4 Results

Using the data provided in Table 1, the following charge to mass ratios were calcu-
lated and put into Table 2. However, we noticed that the very first value produced
a much larger result for E/M. This caused us to calculate all values twice, once with
all 11 values and once with only 10 values, omitting the measurement at 155.3 V,
to see if uncertainty and results can be improved. Based on the results in Table
2, the 1.5 ± 0.3 × 1011 C/kg value for 11 values and the 1.4 ± 0.05 × 1011 C/kg
value for 10 values are consistent with one another and are a little bit lower than
the generally accepted value of 1.75882001076(53) × 1011 C/kg. However, using the
standard deviation as the uncertainty gives a extremely wide range of values since
it is 19% and 4% error for the calculation with all 11 values and calculation with
only 10 values.

Using a different approach to error analysis yielded much better uncertainty.
Substituting "X" for q/m in Equation 18 and separating out the radius results in
Equation 19.

X = 2V (5/4)3A2

(Nµ0I)2r2 (19)

Solving for r2 yields Equation 20.

r2 =
[

2(5/4)3A2

(Nµ0I)2X

]
∗ V (20)
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Voltage (V) E/M (C/kg) E/M (C/kg)

155.3 2.4 ±0.04 × 1011 —
165.4 1.4 ±0.04 × 1011 1.4 ±0.02 × 1011

180.1 1.4 ±0.04 × 1011 1.4 ±0.02 × 1011

195.4 1.4 ±0.04 × 1011 1.4 ±0.02 × 1011

210.7 1.4 ±0.04 × 1011 1.4 ±0.02 × 1011

225.6 1.4 ±0.04 × 1011 1.4 ±0.02 × 1011

240.4 1.4 ±0.04 × 1011 1.4 ±0.02 × 1011

255.8 1.4 ±0.04 × 1011 1.4 ±0.02 × 1011

270.4 1.4 ±0.04 × 1011 1.4 ±0.02 × 1011

285.2 1.4 ±0.04 × 1011 1.4 ±0.02 × 1011

300.0 1.4 ±0.04 × 1011 1.4 ±0.02 × 1011

Average 1.5 ×1011 1.4 ×1011

Standard Deviation 3×1010 5×109

% Uncertainty 19% 4%
Slope From Graph 1.16×10−5 1.18×10−5

Uncertainty in Slope 3.2×10−7 1.2×10−7

% Uncertainty in M 3% 1%
% Uncertainty in A 0.3% 0.3%
% Uncertainty in I 0.04% 0.04%

% Uncertainty in X (E/M) 3% 1%
Uncertainty in X (E/M) 4 ×109 2 ×109

X (E/M) 1.428 ±0.004 × 1011 1.405 ±0.002 × 1011

Table 2: Calculated E/M values and calculated uncertainties

Assuming the charge to mass ratio (X) and current (I) are constant, M can be
substituted for 2(5/4)3A2

(Nµ0I)2X producing a linear equation that relates r2 to V where
r2 = M ∗ V . Graphing both versions of the data in Excel produces graphs in
Figures 4 and 5 shown with a proportional trend line since the radius is 0 at 0 volts.
Using Excel’s LINEST function, the error in slope was found to be 3.2 × 10−7

for all data and 1.2 × 10−7 for the filtered data or 3% and 1% respectively. The
LINEST function uses many underlining assumptions to produce the given error in
slope. First, the function assumes that the relationship between r2 and V is linear
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Figure 4: V vs r2 graph for all data

and goes through the point, (0,0). This means that our equation can be simplified
to the form of y=Bx or r2 = MV in our specific case as explained above. If x
and y have no uncertainties to them, then the slope will be a straight line with
perfect fit. Since there are uncertainties in y and x in real world measurements,
the data when graphed, will be slightly off of the line of best fit. To get this line
of best fit, it is assumed that while x has uncertainty, it is negligible. This is a
reasonable assumption since usually the uncertainty of one variable dominates the
other. Another assumption is that the measured dependent variable is spread with
a Gaussian distribution, and thus the closer values to the true value appear more
often then bad values. Applying theses assumptions produces the uncertainty in y
as:

σy =

√√√√ 1
N − 2

N∑
i=1

(yi −Bxi)2

The N-2 comes from the fact that when there are only two points, uncertainty can
not be determined. There are always two less degrees of freedom then there are
number of data values. Knowing σy allows for the calculation of uncertainty in
slope, B.

σB = σy

√
N

N
∑
x2 − (

∑
x)2
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Figure 5: V vs r2 graph for data without the first measurement

. This is how Excel’s LINEST function gets those values for slope and the uncertainty
in slope.[3]

Using the quadratic sum[3], errors in radius of the Helmholtz coils (A), and error
in current (I), Equation 21 is produced.

δX

X
=

√
2
(
δI

I

)2
+ 2

(
δA

A

)2
+
(
δM

M

)2
(21)

Using 5 × 10−4A as the uncertainty in current (I), 0.154 ± 0.005 m as the value and
uncertainty of the Helmholtz coil radius (A), and the the previously stated values
for uncertainty in slope (M), Equation 21 gives errors of 3% for all data and 1% for
the selected data. Solving the substitute equation for slope, M, from Equation 20
for X produces Equation 22.

X = 2(5/4)3A2

M(NµI)2 (22)

Plugging in the slopes from the graphs in Figures 4 and 5 along with all of the other
known variables, X = 1.428 ± 0.004 × 1011 C/kg for all the data and X = 1.405 ±
0.002 × 1011 C/kg for the selected data. These values along with the uncertainty
were also included in Table 2.
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5 Conclusion

The results obtained from this experiment were a little bit less than the generally
accepted value for the charge to mass ratio. Using the average and standard devia-
tion method for calculating the ratio, the result was within the uncertainty but it is
also worth noting that the uncertainty was 19% and 4% which is not all that great.
Using the second method were the voltage was graphed with radius squared of the
electron beam circle, the results were a little bit lower, at 1.428 ± 0.004 × 1011 C/kg
for all the data and 1.405 ± 0.002 × 1011 C/kg for the selected data, rather than the
generally accepted value of 1.75882001076(53) × 1011 C/kg.

There are a good number of errors that could have contributed to the lower
calculated value. First, the scale for reading off the radius for the charge circle
was placed well behind the bulb. This definitely introduced paralax error that was
random. Another contributing factor to a lower charge to mass ratio was that
the charges were emitting visible light which means that energy was being lost by
the charges in order for them to be observed. This light emission was measured
to be 3.01 µW which would certainly add to the lower than expected charge over
mass. This would be consistent with our results in that we did get a lower value
than expected. The tube was also filled with helium[1]. This means that the charges
were not passing through a vacuum and therefore they surely interacted and collided
with the helium inside the bulb.This energy loss is modeled in Figure 6.

Figure 6: Simulation of Electron losing velocity and thus being less
and less affected by B-Field
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The last error that could probably be neglected was that while the Helmholtz
coils were producing a very strong and uniform magnetic field, the other electronic
devices in the room were also producing magnetic fields and some of those may have
influenced the experiment in some form. The earths magnetic field was negated by
lining up the Helmholtz coils perpendicular to the earths north to south poles.
this means that the cross product between the electrons and the earth’s B-field is
0. Further experimentation in this sphere of physics could include replacing the
Helmholtz coils with elliptical coils and seeing how that would effect both the path
of the charges and also how the equations would change to accommodate the new
non-symmetry in the coils.
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A Appendix: Simulation Computer Code

Here is the code provided to simulate an electron losing energy and thus velocity
due to collisions with He atoms and emission of light. Generic numbers were used
in this simulations and the loss was not made to scale due to the severe complexity
of the calculations for energy loss due to collisions with He atoms.

GlowScript 2.9 VPython
Bfield = vec(0, 0,.01)
q = 45
mass = 2
charge = sphere(pos = vec(-10,0,0), radius =0.3, color =color.

green, make_trail = True)
tmax =250
t = 0
dt = 0.02
velocity = vec(0,3,0)
force=q*vec(velocity.y*Bfield.z-velocity.z*Bfield.y,-velocity.x*

Bfield.z+velocity.z*Bfield.x,velocity.x*Bfield.y-velocity.y*
Bfield.x)+.01*velocity

momentum=velocity*mass
while (t<tmax):

rate(1000)
force=q*vec(velocity.y*Bfield.z-velocity.z*Bfield.y,-

velocity.x*Bfield.z+velocity.z*Bfield.x,velocity.x*
Bfield.y-velocity.y*Bfield.x)+.01*velocity

momentum=momentum+force*dt
velocity=momentum/mass
charge.pos=charge.pos+(momentum/mass)*dt
t=t+dt
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